SAT-Based Verification with IC3: Foundations and Demands

Aaron R. Bradley

ECEE, CU Boulder & Summit Middle School
Induction

Foundation of verification for 40+ years (Floyd, Hoare)

To prove that $S : (I, T)$ has safety property P, prove:

- **Base case (initiation):**
 \[I \Rightarrow P \]

- **Inductive case (consecution):**
 \[P \land T \Rightarrow P' \]
P is inductive
When Induction Fails

We present two solutions...

1. Use a stronger assertion, or
2. Construct an incremental proof, using previously established invariants.

– Manna and Pnueli

"Temporal Verification of Reactive Systems: Safety"

Method 1 = “Monolithic”
Method 2 = “Incremental”
1. Illustration of the two methods
2. SAT-based model checkers
3. Understanding IC3
4. After IC3: Temporal Logics, SMT
5. Challenges for SAT/SMT
Two Transition Systems

\[S_1: \]
\[
x, \ y := 1, 1
\]
\[
\textbf{while} \ \ast: \\
\quad x, \ y := x + 1, y + x
\]

\[S_2: \]
\[
x, \ y := 1, 1
\]
\[
\textbf{while} \ \ast: \\
\quad x, \ y := x + y, y + x
\]

\[P: \ y \geq 1 \]
Induction on System 1

\[S_1: \]
\[
x, y := 1, 1
\]
\[
\text{while } *: \ \ \ x, y := x + 1, y + x
\]

- **Initiation:**
 \[
x = 1 \land y = 1 \Rightarrow y \geq 1
\]
 initial condition

- **Consecution (fails):**
 \[
y \geq 1 \land x' = x + 1 \land y' = y + x \not\Rightarrow y' \geq 1
\]
 transition relation
Problem: y decreases if x is negative. But...

$\varphi_1 : \ x \geq 0$

- Initiation:
 \[x = 1 \land y = 1 \Rightarrow x \geq 0 \]

- Consecution:
 \[x \geq 0 \land x' = x + 1 \land y' = y + x \Rightarrow x' \geq 0 \]

transition relation

φ_1
Back to P

S_1:

\[
\begin{array}{l}
 x, y := 1, 1 \\
 \text{while } *: \\
 \quad x, y := x + 1, y + x \\
\end{array}
\]

Consecution:

\[
\begin{align*}
 x \geq 0 \land y \geq 1 \land x' &= x + 1 \land y' = y + x \Rightarrow y' &\geq 1 \\
\end{align*}
\]

\[
\varphi_1 \land P \land P' \text{ transition relation}
\]

P is inductive relative to φ_1.

SAT-Based Verification with IC3: Foundations and Demands – 9/55
Induction fails for P as in System 1. Additionally,

$$x \geq 0 \land x' = x + y \land y' = y + x \not\Rightarrow x' \geq 0$$

$x \geq 0$ is not inductive, either.
Monolithic Proof

\[S_2: \]

\[
\begin{array}{l}
 x, \ y := 1, \ 1 \\
 \textbf{while} \ \ast: \\
 \quad x, \ y := x + y, \ y + x
\end{array}
\]

Invent strengthening all at once:

\[\hat{P}: \ x \geq 0 \land y \geq 1 \]

Consecution:

\[
\underbrace{x \geq 0 \land y \geq 1}_{\hat{P}} \land x' = x + y \land y' = y + x \Rightarrow \underbrace{x' \geq 0 \land y' \geq 1}_{\hat{P}'}
\]
Incremental vs. Monolithic
Incremental vs. Monolithic Methods

- Incremental: does not always work
- Monolithic: relatively complete
- Incremental: apply induction iteratively (“modular”)
- Monolithic: invent one strengthening formula

We strongly recommend its use whenever applicable. Its main advantage is that of modularity.

– Manna and Pnueli

Temporal Verification of Reactive Systems: Safety

1995
Finite-state System

Transition system:

\[S : (\overline{i}, \overline{x}, I(\overline{x}), T(\overline{x}, \overline{i}, \overline{x}')) \]

Cube \(s \):

- Conjunction of literals, e.g.,
 \[x_1 \land \lnot x_2 \land \lnot x_3 \land x_4 \land \cdots \]

- Like any formula, represents set of states (that satisfy it)

Clause: \(\neg s \)
SAT-Based Backward Model Checking:

1. Search for predecessor s to some error state:

$$P \land T \Rightarrow P'$$

If none, property holds.

2. Reduce cube s to \overline{s}:
 - Expand to others with bad successors [McMillan 2002], [Lu et al. 2005]
 - If $P \land \neg s \land T \Rightarrow \neg s'$, reduce by implication graph [Lu et al. 2005]
 - Apply inductive generalization [Bradley 2007]

3. $P := P \land \neg \overline{s}$
Inductive Generalization

Given: cube s

Find: $c \subseteq \neg s$ such that

- **Initiation:**
 \[I \Rightarrow c \]

- **Consecution (relative to information P):**
 \[P \land c \land T \Rightarrow c' \]

- **No strict subclause of c is inductive relative to P**
SAT-Based Verification with IC3: Foundations and Demands – 17/55

[Bradley '07]

[McMillan '02]

[Lu et al. '05]

Backward Search
Analysis of Backward Search

Strengths:

• Easy SAT queries, low memory
• Property focused
• Some are approximating, computing neither strongest nor weakest strengthening

Weaknesses:

• Essentially undirected search (bad for bug finding)
• Ignore initial states
Analysis of FSIS [Bradley 2007]

Strengths (essentially, great when it works):

- Can significantly reduce backward search
- Can find strong lemmas with induction

Weaknesses:

- Like others when inductive generalization fails
Compared to backward search:

- Considers initial and final states
- Requires solving hard SAT queries
- Practically incomplete (UNSAT case)

\[I \land \bigwedge_{i=0}^{k-1} (P(i) \land T(i)) \land \neg P(k) \]
\textbf{k-Induction} [Sheeran et al. 2000]

Addresses practical incompleteness of BMC:

- Initiation: BMC
- Consecution:

\[
\bigwedge_{i=0}^{k-1} \left(P^{(i)} \land T^{(i)} \right) \Rightarrow P^{(k)}
\]

(plus extra constraints to consider loop-free paths)
Longest loop-free path

\[k = 6 \]

\(k \)-Induction
Property-focused over-approximating post-image:

\[F_i \land \bigwedge_{i=0}^{k-1} (P^{(i)} \land T^{(i)}) \Rightarrow P^{(k)} \]

- \{\text{states} \leq i \text{ steps from initial states}\} \subseteq F_i
- If holds, finds interpolant \(F_{i+1} \):

\[F_i \land T \Rightarrow F'_{i+1} \quad F'_{i+1} \land \bigwedge_{i=1}^{k-1} (P^{(i)} \land T^{(i)}) \Rightarrow P^{(k)} \]

- If fails, increases \(k \)
BMC $\rightarrow \kappa$-Induction \rightarrow ITP

- Completeness from unrolling transition relation
- Evolution: reduce max κ in practice (UNSAT case)
- Monolithic:
 - hard SAT queries
 - induction at top-level only
- Consider both initial and final states
Best of Both?

Desire:

- Stable behavior (backward search)
 - Low memory, reasonable queries
 - Can just let it run
- Consideration of initial and final states (BMC)
- Modular reasoning (incremental method)

Avoid:

- Blind search (backward search)
- Queries that overwhelm the SAT solver (BMC)
IC3: A Prover

Stepwise sets $F_0, F_1, \ldots, F_k, F_{k+1}$ (CNF):

- $\{\text{states} \leq i \text{ steps from initial states}\} \subseteq F_i$
- $F_i \subseteq \{\text{states} \geq k - i + 1 \text{ steps from error}\}$

Four invariants:

- $F_0 = I$
- $F_i \Rightarrow F_{i+1}$
- $F_i \land T \Rightarrow F'_{i+1}$
- Except F_{k+1}, $F_i \Rightarrow P$

∴ if ever $F_i = F_{i+1}$, F_i is inductive & P is invariant
Essence of IC3

• Continual refinement of over-approximating stepwise sets
 • Until one is inductive
 • Monolithic use of induction

• Generation of clauses as response to backward reachable states
 • Inductive generalization: $c \subseteq \neg s$
 (c is inductive relative to a stepwise set)
 • Incremental use of induction
Two Views of IC3

- **Prover**: Generates predicates from counterexamples
 - From s: state that can reach error
 - To $c \subseteq \neg s$: inductive relative to F_i
 - c proves that s is unreachable in $\leq i + 1$ steps
- **Bug finder**: Guided backward search
 - Stepwise sets: proximity estimate to initial state
Induction at Top Level

Is \(P \) inductive relative to \(F_k \)?

\[
F_k \land T \Rightarrow P'
\]

(Recall: \(F_k \Rightarrow P \))

- Possibility #1: Yes
- Conclusion: \(P \) is inductive relative to \(F_k \).
Monolithic behavior (predicate abstraction):

- For i from 1 to k: find largest $C \subseteq F_i$ s.t.

 $$F_i \land T \Rightarrow C'$$

 $$F_{i+1} := F_{i+1} \land C$$

 $$F_{k+1} := F_{k+1} \land P$$

- New frontier: F_{k+1}

If ever $F_i = F_{i+1}$, done: P is invariant.
Counterexample To Induction (CTI):

\[F_k \land T \Rightarrow P' \]

- Possibility #2: No
- Conclusion: \(\exists F_k\)-state \(s \) with error successor
- If \(s \) is an initial state, done: \(P \) is not invariant
- Otherwise...
Induction at Low Level

Inductive Generalization in IC3

• **Given:** cube s

• **Find:** $c \subseteq \neg s$ such that

 • Initiation:

 $$I \Rightarrow c$$

 • Consecution (relative to F_i):

 $$F_i \land c \land T \Rightarrow c'$$

• No strict subclause of c is inductive relative to F_i
Inductive Generalization
Addressing CTI s

- Find highest i such that
 \[F_i \land \neg s \land T \Rightarrow \neg s' \]

- Apply inductive generalization:
 \[c \subseteq \neg s \quad I \Rightarrow c \quad F_i \land c \land T \Rightarrow c' \]

- $\therefore F_{i+1} := F_{i+1} \land c$ (also update F_j, $j \leq i$)

- If $i < k$, new proof obligation:
 \[(s, i + 1) \]

 "Inductively generalize s relative to F_{i+1}"
Addressing Proof Obligation \((t, j)\):

SAT query:

\[F_j \land \neg t \land T \Rightarrow \neg t' \]

If UNSAT:

- Inductive generalization must succeed:

\[c \subseteq \neg t \quad I \Rightarrow c \quad F_j \land c \land T \Rightarrow c' \]

- \[F_{j+1} := F_{j+1} \land c \]

- Updated proof obligation (if \(j < k \)): \((t, j + 1)\)
Addressing Proof Obligation \((t, j)\):

SAT query:

\[F_j \land \neg t \land T \Rightarrow \neg t' \]

If SAT: New CTI \(u\), treat as before
Identification of **relevant predecessors**:

- Why did inductive generalization of s succeed relative to F_i but fail relative to F_{i+1}?
- Because of some F_{i+1}-state s-predecessor t.
- Analysis at F_i focuses IC3’s choice of predecessors at F_{i+1}.
IC3: A Prover

- Based on CTIs (s), IC3 generates F_i-relative inductive clauses ($c \subseteq \neg s$) to refine F_i’s.
- IC3 propagates clauses to prepare new frontier.
 - Some clauses may be too specific.
 - Their loss can break mutual support.
- As the frontier advances, IC3 considers ever more general situations.
- It eventually finds the real reasons (as truly inductive clauses) that P is invariant.
IC3: A Bug Finder

Suppose:

• \(u \rightarrow t \rightarrow s \rightarrow \text{Error} \)

• Proof obligations:

\[
\{(s, \ k - 1), \ (t, \ k - 2), \ (u, \ k - 1)\}
\]

That is,

• \(s \) must be inductively generalize relative to \(F_{k-1} \)
• \(t \) must be inductively generalize relative to \(F_{k-2} \)
• \(u \) must be inductively generalize relative to \(F_{k-1} \)

Which proof obligation should IC3 address next?
Guided Search

Two observations:

• \(u \) is the “deepest” of the states

\[
u \rightarrow t \rightarrow s \rightarrow \text{Error}
\]

• \(t \) is the state that IC3 considers as likeliest to be closest to an initial state.

\[
\{(s, k-1), (t, k-2), (u, k-1)\}
\]

“Proximity metric”

Conclusion: Pursue \((t, k-2)\) next.

(It also happens to be the correct choice [Bradley 2011].)
\{ (s, k-1), (t, k-2), (u, k-1) \}

Proof Obligations: Guided Search
Incremental, Inductive Verification

IIV Algorithm:

• Constructs concrete **hypotheses**
• Generates intermediate lemmas **incrementally**
• Applies **induction** many times
• **Generalizes** from hypotheses to strong lemmas
After IC3: Refinements

- New heuristic: ternary simulation cube reduction
 [Een et al., FMCAD’11]
- Industrial setting: incremental verification
 [Chockler et al., FMCAD’11]

Oh, yeah, and a name change: **PDR**
(Thanks, Niklas!)
PDR: Temporal Logics

- FAIR [Bradley et al., FMCAD’11]
 - For ω-regular properties, e.g., LTL
 - Insight: SCC-closed regions can be characterized inductively

- IICTL [Hassan et al., CAV’12]
 - For CTL properties
 - Insight: EX (SAT), EU (IC3), EG (FAIR)
 - Standard traversal of CTL property’s parse tree
 - Over- and under-approximating sets
 - Task state-driven refinement
PDR: Infinite-state Systems

- SMT-based Induction Methods for Timed Systems [Kindermann et al., arXiv’12]
- Generalized Property Directed Reachability [Hoder et al., SAT’12]
 - Boolean push-down systems
 - Linear real arithmetic
- Software Model Checking via IC3 [Cimatti et al., CAV’12]
 - Explicit handling of CFG
 - Applies IC3 techniques to McMillan’s “Lazy Abstraction with Interpolants” [McMillan, CAV’06]
Some presentations use LIFO ordering:

- Trivial correctness; easier to understand
- [Hoder et al., SAT’12], [Cimatti et al., CAV’12]
- Downside: not quite as good?
 - PSPACE-complete (finite-state), so...
 - But: fixed-length counterexamples for K
 - And: not aggressive about mutual induction
Challenges for SAT/SMT

1. Emphasizes incremental calls (100s-1000s/sec) (FAIR/IICTL: even pushes/pops sets of clauses)
2. Understand effect of solver’s choices on PDR
3. Variable ordering:
 • Vital to practical performance
 • Direct core assumptions and lifting
4. IIV: proofs pushed to block (e.g., FAIR)
 • Solver should report whether proof is “useful”
5. Multi-threaded access over core constraints
Conclusions

• Attempted to explain why IC3 works:
 • As a compromise between the incremental and monolithic strategies
 • Characteristics of previous SAT-based MC
 • As a prover
 • As a bug finder
• Subsequent work: temporal logic, SMT
• Challenges for SAT/SMT