
Pool vs Regular

An Improved Separation of Regular Resolution

from Pool Resolution and Clause Learning

Maria Luisa Bonet and Sam Buss

Theory and Applications of Satisfiability Testing — SAT 2012
Trento, Italy
July 17, 2012



Pool vs Regular

Introduction

SAT algorithms

SAT algorithms - Remarkably successful

◮ Routinely solve industrial instances with ≥100,000’s of
variables.

◮ Mostly based on depth-first search. (DPLL)

◮ Use a suite of methods to speed search: clause learning, fast
backtracking, restarts, implementation tuning.

◮ Find satisfying assignment or generate a resolution refutation.

◮ Algorithms lift to a useful fragments of first-order logic.
(SMT solvers.)



Pool vs Regular

Introduction

Open Questions:

What is the logical complexity of SAT algorithms in terms of
prooof systems?

Question:

Does DPLL with clause learning, but no restarts, polynomially
simulate resolution proofs?

Goal:

Prove the simulation, or find separating examples.



Pool vs Regular

Introduction

Clause learning is the main heuristic that has a logical
justification.

Fundamental idea: Set a trial (partial) satisfying assignment.
When blocked, use this “counter-example” to learn a new clause.
The new clause helps avoid repeatedly searching the same part of
the solution space.
GRASP: Marques-Silva & Sakallah [1999].

Several heuristics are used to decide which clauses to learn, e.g.,
First-UIP. These are all encompassed by “input resolution”, aka
“trivial resolution”. (Beame-Kautz-Sabarwal [2004].)

◮ Input resolution corresponds to contradictions that can be
discovered by unit propagation.

◮ Easy to decide if a given clause can be derived by input
resolution.



Pool vs Regular

Relation to resolution

Relationship to resolution?

[Folklore?] Resolution simulates all current DPLL-based algorithms,
including with clause learning, restarts, and pure literal selection.

DPLL with clause learning and restarts:

Theorem [BKS 2004] Non-greedy DPLL with clause learning and
restarts simulates full resolution.

Proof idea: Simulate a resolution refutation, using a new restart
for each clause in the refutation. Ignore contradictions (hence:
non-greedy) until able to learn the desired clause. �

Theorem [Pipatsrisawat-Darwiche, 2010] (Greedy) DPLL with
clause learning and (many!) restarts simulates full resolution.

[Atserias, Fichte, Thurley ’11] - related results for bounded width.



Pool vs Regular

Relation to resolution

DPLL and clause learning without restarts

[BKS ’04; H-B-P-vG ’08; B-H-J ’08] It is possible to add new
variables and clauses that preserve (un)satisfiability, so that DPLL
with clause learning can refute the augmented set of clauses if and
only if resolution can refute the original set of clauses.

In this way, DPLL with clause learning can “effectively p-simulate”
resolution.

These new variables and clauses are proof trace extensions or
variable extensions.

Drawback:

◮ The variable extensions yields contrived sets of clauses, and
the resulting DPLL executions are unnatural.



Pool vs Regular

Key definitions

Def’n. A proof (or a depth-first traversal of a proof) is regular
provided no variable is resolved on twice in any branch.

Defn. A pool of literals is the set of literals that have been set
true at any point during during a depth-first traversal (or, during a
DPLL search).

Def’n. A proof (or, DPLL search) is greedy provided that no
falsified clauses are ignored. That is, the search terminates once
the pool has falsified some clause.

Def’n. A proof (or, DPLL search) is unit-propagating provided
that it does not ignore contradictions that can found by unit
propagation after setting the pool literals true.



Pool vs Regular

Pool resolution

Pool resolution

[Van Gelder, 2005] introduced pool resolution as a system that can
simulate DPLL clause learning without restarts. Pool resolution
consists of:

a. A degenerate resolution inference rule, where the resolution
literal may be missing from either hypothesis. If so, the
conclusion is equal to one of the hypotheses.

b. A dag-like degenerate resolution refutation with a regular
depth-first traversal.

The degenerate rule is needed to learn more clauses. The regular
depth-first traversal corresponds to the fact that DPLL algorithms
do not change the value of literals without backtracking.

Thm [VG’05] Pool resolution p-simulates DPLL clause learning
without restarts.



Pool vs Regular

regWRTI

regWRTI

[Buss-Hoffmann-Johannsen ’08] gave a system that is equivalent to
non-greedy DPLL clause learning without restarts.

w-resolution: C D
(C \ {x}) ∪ (D \ {x})

where x /∈ C and x /∈ D.

[BHJ] uses tree-like proofs with lemmas to simulate dag like
proofs. A lemma must be earlier derived in left-to-right order. A
lemma is input if derived by an input subderivation (allowing
lemmas in the subderivation).

Thm [BHJ]. Resolution trees with input lemmas simulates general
resolution (i.e., with arbitrary lemmas).



Pool vs Regular

regWRTI

Defn A regWRTI derivation is a regular tree-like w-resolution with
input lemmas.

Thm [BHJ] regWRTI p-simulates DPLL clause learning without
restarts. Conversely, non-greedy DPLL clause learning (without
restarts) p-simulates regWRTI.

The above theorem allows very general schemes of clause learning.

The greedy case still open: No exact formal system is known to be
p-equivalent.
However, regWRTI is a reasonable conjecture.



Pool vs Regular

Regular resolution and resolution

Regular resolution and resolution

Fact: DPLL clause learning without restarts (and regWRTI and
pool resolution) simulates regular resolution.

Thm [Alekhnvitch,Johannsen,Pitassu,Urquhart 2002]
Regular resolution does not p-simulate resolution.

[APJU] gave two examples of separations.

◮ Graph tautologies expressing the existence of a minimal
element in a linear order, obfuscated by making the axioms
more complicated.

◮ A Stone principle about pebbling dag’s.

[Urquhart’11] - an example using obfuscated pebbling principles.

The (non-obfuscated) graph tautologies were originally introduced by [Krishnamurthy ’85].
Regular refutations were given by [St̊almarck, ’96] and [Bonet-Galesi ’99].



Pool vs Regular

Regular resolution and resolution

Graph tautologies

The (negations of the) graph tautologies, GTn have the following
clauses. The intuition is that xi ,j means “i ≺ j for some linear
order ≺. The literal x i ,j is the same literal as xj ,i .

◮ Transitivity: xi ,j , xj ,k , xk,i — distinct i , j , k < n.

◮ No minimum:
∨

j 6=i xj ,i .

These have polynomial size, regular resolution refutations
[St̊almarck, Bonet-Galesi],.



Pool vs Regular

Regular resolution and resolution

We use the term guarded graph tautologies (GGTn) for [AJPU]’s
obfuscated graph tautologies. In these, initial clauses xi ,j , xj ,k , xk,i
are replaced by

xi ,j , xj ,k , xk,i , xr ,s and xi ,j , xj ,k , xk,i , x r ,s

for some r = r(i , j , k) and s = s(i , j , k). (All i , j , k , r , s distinct.)

The non-regular refutation of GGTn comes from resolving the two
above clauses to derive xi ,j , xj ,k , xk,i , for all i , j , k , and then using
the (regular) refutation of GTn.



Pool vs Regular

Regular resolution and resolution

Theorem [Bonet-Buss] There are polynomial size pool refutations
and also regRTI refutations of the GGTn clauses. Consequently,
DPLL clause learning without restarts can show the unsatisfiability
of the GGTn clauses in polynomial time.

Note that w-resolution is not needed, only resolution.

Proof is very detailed and technical.
Proof sketch: Next two slides...

Parts of the following corollary were already shown by [BKS] and
Van Gelder using proof trace extensions:

Corollary Regular resolution does not simulate regWRTI, or pool
resolution, or DPLL clause learning without restarts.



Pool vs Regular

Regular resolution and resolution

Proof sketch. Idea is to have a partially defined “bipartite”
ordering π on the vertices of the underlying graph. The clause
(
∨
π) contains the negations of the literals set true in π (i.e.,

states that π does not hold). Initially π is empty.

The refutation is constructed in stages, in left-to-right order. At
each stage, the goal is to give a subderivation of a clause (

∨
π).

This is done by considering a regular refutation of GGTn ↾ π, and
then weakening to get (

∨
π), and then replacing GTn initial

clauses with GGTn clauses as needed.

In some cases, it is possible to further transform the refutation (by
introducing extra side literals) so as to keep the partially completed
refutation valid.

But in some cases, there is an initial axiom xi ,j , xj ,k , xk,i which
cannot be derived from its GGTn initial clauses without violating
regularity.



Pool vs Regular

Regular resolution and resolution

In these cases, we instead add a subproof that learns xi ,j , xj ,k , xk,i .

xi ,j , xj ,k , xk,i , xr .s xi ,j , xj ,k , xk,i , x r .s
xi ,j , xj ,k , xk,i

(
∨
π1)
...

xi ,j , xj ,k ,C1

(
∨
π2)
...

xi ,j ,C2

(
∨
π3)
...

(
∨
π)

◮ The regularity condition will hold.
◮ Side literals C1,C2 can be chosen to make the resolution

inferences valid.
◮ Each (

∨
πi) is a bipartite partial restriction that will be

handled in later stages. The omitted parts contain inferences
to ensure this.

◮ This construction is needed only polynomially many times
since there are only polynomially many GTn initial clauses. �



Pool vs Regular

Regular resolution and resolution

Greedy, unit propagating DPLL with clause learning.

The same proof techniques can be extended to give the following
improvement:

Theorem [Bonet-Buss] The GGTn clauses can be proved to be
unsatisfiable by a polynomial time, greedy, unit propagating DPLL
proof search with clause learning and without restarts.

Proof technique: The essential idea is to follow the variable
selection order implicit in the regWRTI proof of the GGTn proof.



Pool vs Regular

Regular resolution and resolution

Open Question.

Can this be extended? For instance, is it possible that pool
resolution or even regWRTI p-simulates full resolution? In this
case, (non-greedy) DPLL clause learning without restarts will
simulate full resolution.

The GGTn tautologies had been conjectured to separate DPLL
clause learning from resolution, but our theorem above disproves
this.

The other two candidates are the Stone tautologies, and
Urquhart’s obfuscated pebbling tautologies. But . . .



Pool vs Regular

Regular resolution and resolution

Recent results

Thm. [Bonet-Buss-Johannsen, in preparation] Urquhart’s
obfuscated pebbling tautologies have polynomial size regWRTI
derivations.

Thm. [Buss-Kolodziejczyk, in progress] The [AJPU] Stone
tautologies have polynomial size regWRTI derivations.

Conjecture: regWRTI p-simulates pool resolution.

Possibly: regWRTI p-simulates resolution. If so, DPLL with clause
learning and no restarts p-simulates resolution.



Pool vs Regular

Thank you

Thank you!


	Introduction
	Relation to resolution
	Key definitions
	Pool resolution
	regWRTI
	Regular resolution and resolution
	Thank you

