On Efficient Computation of Variable MUSes

Anton Belov1, Alexander Ivrii2,
Arie Matsliah2, Joao Marques-Silva1

1Complex and Adaptive Systems Laboratory
University College Dublin, Ireland

2IBM Research – Haifa, Israel

SAT 2012
June 20, 2012
Trento, Italy
$\mathcal{F} = \{ C_1, \ldots, C_6 \} \in \text{UNSAT}$

$C_1 = (p)$ $C_3 = (\neg p \lor \neg q)$ $C_5 = (\neg p \lor r)$

$C_2 = (q)$ $C_4 = (p \lor q)$ $C_6 = (\neg q \lor \neg r)$
\(\mathcal{F} = \{ C_1, \ldots, C_6 \} \in \text{UNSAT} \)

\[
\begin{align*}
C_1 &= (p) & C_3 &= (\neg p \lor \neg q) & C_5 &= (\neg p \lor r) \\
C_2 &= (q) & C_4 &= (p \lor q) & C_6 &= (\neg q \lor \neg r)
\end{align*}
\]

Which part of \(\mathcal{F} \) is responsible for its inconsistency?
Introduction

\[\mathcal{F} = \{ C_1, \ldots, C_6 \} \in \text{UNSAT} \]

\begin{align*}
C_1 &= (p) & C_3 &= (\neg p \lor \neg q) & C_5 &= (\neg p \lor r) \\
C_2 &= (q) & C_4 &= (p \lor q) & C_6 &= (\neg q \lor \neg r)
\end{align*}

Which part of \(\mathcal{F} \) is responsible for its inconsistency?
\[\mathcal{F} = \{ C_1, \ldots, C_6 \} \in \text{UNSAT} \]

\[
\begin{align*}
C_1 &= (p) & C_3 &= (\neg p \lor \neg q) & C_5 &= (\neg p \lor r) \\
C_2 &= (q) & C_4 &= (p \lor q) & C_6 &= (\neg q \lor \neg r)
\end{align*}
\]

Which part of \(\mathcal{F} \) is responsible for its inconsistency?

\(\{ C_1, C_2, C_3 \} \) is a subset-minimal set of clauses required to refute \(\mathcal{F} \).
$F = \{ C_1, \ldots, C_6 \} \in \text{UNSAT}$

\[
\begin{align*}
C_1 &= (p) \\
C_2 &= (q) \\
C_3 &= (\neg p \lor \neg q) \\
C_4 &= (p \lor q) \\
C_5 &= (\neg p \lor r) \\
C_6 &= (\neg q \lor \neg r)
\end{align*}
\]

Which part of F is responsible for its inconsistency?

$\{ C_1, C_2, C_3 \}$ is a subset-minimal set of clauses required to refute F.

$F' \subseteq F$ is minimally unsatisfiable subformula (MUS) of F if $F' \in \text{UNSAT}$, and $\forall C \in F', F' \setminus \{ C \} \in \text{SAT}$.
\[F = \{ C_1, \ldots, C_6 \} \in \text{UNSAT} \]

\[
\begin{align*}
C_1 &= (p) \\
C_2 &= (q) \\
C_3 &= (\neg p \lor \neg q) \\
C_4 &= (p \lor q) \\
C_5 &= (\neg p \lor r) \\
C_6 &= (\neg q \lor \neg r)
\end{align*}
\]

Which part of \(F \) is responsible for its inconsistency?

\(\{ C_1, C_2, C_3 \} \) is a subset-minimal set of clauses required to refute \(F \).

\(F' \subseteq F \) is \textit{minimally unsatisfiable subformula (MUS)} of \(F \) if \(F' \in \text{UNSAT} \), and \(\forall C \in F', F' \setminus \{ C \} \in \text{SAT} \).

\(\{ C_1, C_2, C_5, C_6 \} \) is also an MUS of \(F \).
\(F = \mathcal{G}_1 \cup \mathcal{G}_2 \cup \mathcal{G}_3 \in \text{UNSAT} \) — partitioned into groups (sets) of clauses

\[\mathcal{G}_1 = \{ C_1, C_2 \}, \quad \mathcal{G}_2 = \{ C_3, C_4 \}, \quad \mathcal{G}_3 = \{ C_5, C_6 \}. \]

\[C_1 = (p) \]
\[C_2 = (q) \]
\[C_3 = (\neg p \lor \neg q) \]
\[C_4 = (p \lor q) \]
\[C_5 = (\neg p \lor r) \]
\[C_6 = (\neg q \lor \neg r) \]
\[F = G_1 \cup G_2 \cup G_3 \in \text{UNSAT} \quad \text{— partitioned into groups (sets) of clauses} \]

\[G_1 = \{ C_1, C_2 \}, \quad G_2 = \{ C_3, C_4 \}, \quad G_3 = \{ C_5, C_6 \}. \]

\[
\begin{align*}
C_1 &= (p) \\
C_2 &= (q) \\
C_3 &= (\neg p \lor \neg q) \\
C_4 &= (p \lor q) \\
C_5 &= (\neg p \lor r) \\
C_6 &= (\neg q \lor \neg r)
\end{align*}
\]

What is a subset-minimal set of groups required to refute \(F \)?
\(F = G_1 \cup G_2 \cup G_3 \in \text{UNSAT} \) — partitioned into \textit{groups} (sets) of clauses

\[
G_1 = \{ C_1, C_2 \}, \quad G_2 = \{ C_3, C_4 \}, \quad G_3 = \{ C_5, C_6 \}.
\]

\[
\begin{align*}
C_1 &= (p) & C_3 &= (\neg p \lor \neg q) \\
C_2 &= (q) & C_4 &= (p \lor q) \\
C_5 &= (\neg p \lor r) & C_6 &= (\neg q \lor \neg r)
\end{align*}
\]

What is a subset-minimal set of \textit{groups} required to refute \(F \)?

\(\{ G_1, G_2 \} \) is a \textit{group-MUS} of (the partitioned) \(F \).
Introduction

\[\mathcal{F} = \mathcal{G}_1 \cup \mathcal{G}_2 \cup \mathcal{G}_3 \in \text{UNSAT} \text{ — partitioned into groups (sets) of clauses} \]

\[\mathcal{G}_1 = \{ C_1, C_2 \}, \quad \mathcal{G}_2 = \{ C_3, C_4 \}, \quad \mathcal{G}_3 = \{ C_5, C_6 \}. \]

\[C_1 = (p) \quad C_3 = (\neg p \lor \neg q) \quad C_5 = (\neg p \lor r) \]
\[C_2 = (q) \quad C_4 = (p \lor q) \quad C_6 = (\neg q \lor \neg r) \]

What is a subset-minimal set of groups required to refute \(\mathcal{F} \)?

\(\{ \mathcal{G}_1, \mathcal{G}_2 \} \) is a group-MUS of (the partitioned) \(\mathcal{F} \).

\(\{ \mathcal{G}_1, \mathcal{G}_3 \} \) is also a group-MUS of (the partitioned) \(\mathcal{F} \).
What about the variables of \mathcal{F}?

\begin{align*}
C_1 &= (p) & C_3 &= (\neg p \lor \neg q) & C_5 &= (\neg p \lor r) \\
C_2 &= (q) & C_4 &= (p \lor q) & C_6 &= (\neg q \lor \neg r)
\end{align*}

What is a subset-minimal set of variables required to refute \mathcal{F}?
What about the variables of \mathcal{F}?

\[
\begin{align*}
C_1 &= (p) & C_3 &= (\neg p \lor \neg q) & C_5 &= (\neg p \lor r) \\
C_2 &= (q) & C_4 &= (p \lor q) & C_6 &= (\neg q \lor \neg r)
\end{align*}
\]

What is a subset-minimal set of variables required to refute \mathcal{F}?

\{p, q\} is such a subset of variables.
What about the variables of \mathcal{F}?

\[
\begin{align*}
C_1 &= (p) \\
C_2 &= (q) \\
C_3 &= (\neg p \lor \neg q) \\
C_4 &= (p \lor q) \\
C_5 &= (\neg p \lor r) \\
C_6 &= (\neg q \lor \neg r)
\end{align*}
\]

What is a subset-minimal set of variables required to refute \mathcal{F}?

\{p, q\} is such a subset of variables.

\{p, q\} is a \textit{variable-MUS} of \mathcal{F}.
Introduction

What about the variables of \mathcal{F}?

\begin{align*}
C_1 &= (p) \\
C_2 &= (q) \\
C_3 &= (\neg p \lor \neg q) \\
C_4 &= (p \lor q) \\
C_5 &= (\neg p \lor r) \\
C_6 &= (\neg q \lor \neg r)
\end{align*}

What is a subset-minimal set of variables required to refute \mathcal{F}?

\{p, q\} is such a subset of variables.

\{p, q\} is a variable-MUS of \mathcal{F}.

This paper is about algorithms for efficient computation of variable-MUSes.
What about the variables of \mathcal{F}?

$$
\begin{align*}
C_1 &= (p) & C_3 &= (\neg p \lor \neg q) \\
C_2 &= (q) & C_4 &= (p \lor q) \\
C_5 &= (\neg p \lor r) & C_6 &= (\neg q \lor \neg r)
\end{align*}
$$

What is a subset-minimal set of variables required to refute \mathcal{F}?

\{p, q\} is such a subset of variables.

\{p, q\} is a \textbf{variable-MUS} of \mathcal{F}.

This paper is about algorithms for efficient computation of variable-MUSes.

Some applications: finding vertex-critical subgraphs; abstraction in abstraction refinement framework; satisfying assignments minimization.
Definition
Let $V \subseteq \text{Var}(\mathcal{F})$. The subformula of \mathcal{F} induced by V is the formula $\mathcal{F}|_V = \{ C \mid C \in \mathcal{F} \text{ and } \text{Var}(C) \subseteq V \}$.

I.e. $\mathcal{F}|_V$ includes only those clauses of \mathcal{F} whose variables are in V.
Definition
Let $V \subseteq Var(\mathcal{F})$. The subformula of \mathcal{F} \textit{induced} by V is the formula $\mathcal{F}|_V = \{ C \mid C \in \mathcal{F} \text{ and } Var(C) \subseteq V \}$.

I.e. $\mathcal{F}|_V$ includes only those clauses of \mathcal{F} whose variables are in V.

\[
\begin{align*}
C_1 &= (p) & C_3 &= (\neg p \lor \neg q) & C_5 &= (\neg p \lor r) \\
C_2 &= (q) & C_4 &= (p \lor q) & C_6 &= (\neg q \lor \neg r)
\end{align*}
\]
Definition
Let \(V \subseteq \text{Var}(\mathcal{F}) \). The subformula of \(\mathcal{F} \) \textit{induced} by \(V \) is the formula
\[
\mathcal{F}|_V = \{ C \mid C \in \mathcal{F} \text{ and } \text{Var}(C) \subseteq V \}.
\]
I.e. \(\mathcal{F}|_V \) includes only those clauses of \(\mathcal{F} \) whose variables are in \(V \).

\[
\begin{align*}
C_1 &= (p) & C_3 &= (\neg p \lor \neg q) & C_5 &= (\neg p \lor r) \\
C_2 &= (q) & C_4 &= (p \lor q) & C_6 &= (\neg q \lor \neg r)
\end{align*}
\]

The subformula induced by \(\{p, q\} \) is \(\mathcal{F}|_{\{p,q\}} = \{C_1, C_2, C_3, C_4\} \).

Variable \(r \) is “removed” from \(\mathcal{F} \).
Definition
Let $V \subseteq \text{Var}(\mathcal{F})$. The subformula of \mathcal{F} \textit{induced} by V is the formula $\mathcal{F}|_V = \{ C \mid C \in \mathcal{F} \text{ and } \text{Var}(C) \subseteq V \}$. I.e. $\mathcal{F}|_V$ includes only those clauses of \mathcal{F} whose variables are in V.

\[
\begin{align*}
C_1 &= (p) & C_3 &= (\neg p \lor \neg q) & C_5 &= (\neg p \lor r) \\
C_2 &= (q) & C_4 &= (p \lor q) & C_6 &= (\neg q \lor \neg r)
\end{align*}
\]

\begin{itemize}
 \item The subformula induced by \{p, q\} is $\mathcal{F}|_{\{p, q\}} = \{ C_1, C_2, C_3, C_4 \}$.
 \begin{itemize}
 \item variable r is “removed” from \mathcal{F}.
 \end{itemize}
 \item The subformula induced by \{p\}, $\mathcal{F}|_p = \{ C_1 \}$.
 \begin{itemize}
 \item variables q, r are “removed” from \mathcal{F}.
 \end{itemize}
\end{itemize}
Definition
Let $V \subseteq \text{Var}(\mathcal{F})$. The subformula of \mathcal{F} induced by V is the formula $\mathcal{F}|_V = \{ C \mid C \in \mathcal{F} \text{ and } \text{Var}(C) \subseteq V \}$.
I.e. $\mathcal{F}|_V$ includes only those clauses of \mathcal{F} whose variables are in V.

Definition
A set $V \subseteq \text{Var}(\mathcal{F})$ is a \textit{variable-MUS (VMUS)} of \mathcal{F} if $\mathcal{F}|_V \in \text{UNSAT}$, and for any $V' \subset V$, $\mathcal{F}|_{V'} \in \text{SAT}$.

Definition

Let $V \subseteq \text{Var}(\mathcal{F})$. The subformula of \mathcal{F} *induced* by V is the formula

$$\mathcal{F}|_V = \{ C \mid C \in \mathcal{F} \text{ and } \text{Var}(C) \subseteq V \}.$$

I.e. $\mathcal{F}|_V$ includes only those clauses of \mathcal{F} whose variables are in V.

Definition

A set $V \subset \text{Var}(\mathcal{F})$ is a *variable-MUS (VMUS)* of \mathcal{F} if $\mathcal{F}|_V \in \text{UNSAT}$, and for any $V' \subset V$, $\mathcal{F}|_{V'} \in \text{SAT}$.

\[
\begin{align*}
C_1 &= (p) & C_3 &= (\neg p \lor \neg q) & C_5 &= (\neg p \lor r) \\
C_2 &= (q) & C_4 &= (p \lor q) & C_6 &= (\neg q \lor \neg r)
\end{align*}
\]
Definition
Let $V \subseteq Var(F)$. The subformula of F induced by V is the formula
$F|_V = \{ C \mid C \in F \text{ and } Var(C) \subseteq V \}$.
I.e. $F|_V$ includes only those clauses of F whose variables are in V.

Definition
A set $V \subset Var(F)$ is a variable-MUS (VMUS) of F if $F|_V \in UNSAT$, and for any $V' \subset V$, $F|_{V'} \in SAT$.

$$
\begin{align*}
C_1 &= (p) & C_3 &= (\neg p \lor \neg q) & C_5 &= (\neg p \lor r) \\
C_2 &= (q) & C_4 &= (p \lor q) & C_6 &= (\neg q \lor \neg r)
\end{align*}
$$

$\Rightarrow F|_{\{p, q\}} = \{ C_1, C_2, C_3, C_4 \} \in UNSAT.$
Definition
Let $V \subseteq \text{Var}(\mathcal{F})$. The subformula of \mathcal{F} induced by V is the formula
$\mathcal{F}|_V = \{ C \mid C \in \mathcal{F} \text{ and } \text{Var}(C) \subseteq V \}$.
I.e. $\mathcal{F}|_V$ includes only those clauses of \mathcal{F} whose variables are in V.

Definition
A set $V \subset \text{Var}(\mathcal{F})$ is a variable-MUS (VMUS) of \mathcal{F} if $\mathcal{F}|_V \in \text{UNSAT}$, and for any $V' \subset V$, $\mathcal{F}|_{V'} \in \text{SAT}$.

$C_1 = (p)$ \hspace{1cm} $C_3 = (\neg p \lor \neg q)$ \hspace{1cm} $C_5 = (\neg p \lor r)$

$C_2 = (q)$ \hspace{1cm} $C_4 = (p \lor q)$ \hspace{1cm} $C_6 = (\neg q \lor \neg r)$

$\mathcal{F}|_{\{p\}} = \{ C_1 \} \in \text{SAT}$.
Variable-MUSes

[Zhen-Yu Chen and De-Cheng Ding, TAMC’06]

Definition

Let $V \subseteq \text{Var}(\mathcal{F})$. The subformula of \mathcal{F} *induced* by V is the formula $\mathcal{F}|_V = \{ C \mid C \in \mathcal{F} \text{ and } \text{Var}(C) \subseteq V \}$.

I.e. $\mathcal{F}|_V$ includes only those clauses of \mathcal{F} whose variables are in V.

Definition

A set $V \subset \text{Var}(\mathcal{F})$ is a *variable-MUS (VMUS)* of \mathcal{F} if $\mathcal{F}|_V \in \text{UNSAT}$, and for any $V' \subset V$, $\mathcal{F}|_{V'} \in \text{SAT}$.

\[
\begin{align*}
C_1 &= (p) & C_3 &= (\neg p \lor \neg q) & C_5 &= (\neg p \lor r) \\
C_2 &= (q) & C_4 &= (p \lor q) & C_6 &= (\neg q \lor \neg r)
\end{align*}
\]

$\Rightarrow \mathcal{F}|_{\{q\}} = \{ C_2 \} \in \text{SAT}$.

A. Belov, A. Ivrii, A. Matsliah and J. Marques-Silva
Variable MUSes
SAT 2012
6 / 24
Variable-MUSes [Zhen-Yu Chen and De-Cheng Ding, TAMC’06]

Definition
Let $V \subseteq \text{Var}(\mathcal{F})$. The subformula of \mathcal{F} *induced* by V is the formula $\mathcal{F}|_V = \{ C \mid C \in \mathcal{F} \text{ and } \text{Var}(C) \subseteq V \}$. I.e. $\mathcal{F}|_V$ includes only those clauses of \mathcal{F} whose variables are in V.

Definition
A set $V \subset \text{Var}(\mathcal{F})$ is a *variable-MUS (VMUS)* of \mathcal{F} if $\mathcal{F}|_V \in \text{UNSAT}$, and for any $V' \subset V$, $\mathcal{F}|_{V'} \in \text{SAT}$.

\[
\begin{align*}
C_1 &= (p) & C_3 &= (\neg p \lor \neg q) & C_5 &= (\neg p \lor r) \\
C_2 &= (q) & C_4 &= (p \lor q) & C_6 &= (\neg q \lor \neg r)
\end{align*}
\]

Hence, $\{p, q\}$ is a VMUS of \mathcal{F}. Notation: $\{p, q\} \in \text{VMUS}(\mathcal{F})$.
Basic algorithms are similar to MUS extraction algorithms: based on detection of \textit{necessary} variables.

Notation: for $v \in \text{Var}(\mathcal{F})$, $\mathcal{F}^v = \{ C \mid C \in \mathcal{F} \text{ and } v \in \text{Var}(C) \}$.

Definition

$v \in \text{Var}(\mathcal{F})$ is \textit{necessary} for \mathcal{F} if $\mathcal{F} \in \text{UNSAT}$ and $\mathcal{F} \setminus \mathcal{F}^v \in \text{SAT}$.
Computing VMUSes

Basic algorithms are similar to MUS extraction algorithms: based on detection of \textit{necessary} variables.

Notation: for $v \in \text{Var}(\mathcal{F})$, $\mathcal{F}^v = \{ C \mid C \in \mathcal{F} \text{ and } v \in \text{Var}(C) \}$.

Definition

$v \in \text{Var}(\mathcal{F})$ is \textit{necessary} for \mathcal{F} if $\mathcal{F} \in \text{UNSAT}$ and $\mathcal{F} \setminus \mathcal{F}^v \in \text{SAT}$.

Properties:

1. $V \in \text{VMUS}(\mathcal{F})$ if and only if every $v \in V$ is necessary for $\mathcal{F}|_V$.
2. If v is necessary for \mathcal{F}, then v is necessary for any unsatisfiable $\mathcal{F}' \subseteq \mathcal{F}$.
Hybrid VMUS Computation w/o optimizations

Input \mapsto **Output**: Unsatisfiable CNF Formula $\mathcal{F} \mapsto V \in \text{VMUS}(\mathcal{F})$

\[
egin{align*}
V & \leftarrow \emptyset \quad /\!/ \text{ VMUS under-approximation} \\
V_w & \leftarrow \text{Var}(\mathcal{F}) \quad /\!/ \text{ Working (‘‘untested’’) set of variables} \\
\mathcal{F}_w & \leftarrow \mathcal{F} \quad /\!/ \text{ Working formula} \\
\text{while } V_w \neq \emptyset & \quad /\!/ \text{ Inv: } \mathcal{F}_w = \mathcal{F}|_{V \cup V_w} \text{ and } \forall v \in V \text{ is nec. for } \mathcal{F}_w
\end{align*}
\]

\[
\begin{align*}
\forall v & \leftarrow \text{PickVariable}(V_w) \\
V_w & \leftarrow V_w \setminus \{v\} \quad /\!/ \text{ Redundancy removal} \\
\mathcal{R} & \leftarrow \text{CNF}(\neg \mathcal{F}_w^v) \\
\text{st} & = \text{SAT}(\mathcal{F}_w \setminus \mathcal{F}_w^v) \\
\text{if } \text{st} = \text{false} & \quad /\!/ v \text{ is not necessary for } \mathcal{F}_w
\end{align*}
\]

\[
\begin{align*}
V_w & \leftarrow V_w \cap \text{Var}(\mathcal{U}) \quad /\!/ \text{ Variable-set refinement} \\
\mathcal{F}_w & \leftarrow \mathcal{F}_w \setminus \mathcal{F}_w^v
\end{align*}
\]

\[
\text{else} \quad /\!/ v \text{ is necessary for } \mathcal{F}_w
\]

\[
\begin{align*}
V & \leftarrow V \cup \{v\} \\
V_w & \leftarrow V_w \setminus \{v\}
\end{align*}
\]

\[
\text{return } V \quad /\!/ V \in \text{VMUS}(\mathcal{F}) \text{ and } \mathcal{F}_w = \mathcal{F}|_{V \in \text{VMU}}
\]
Hybrid VMUS Computation w/o optimizations

Does not scale:

- Number of SAT solver calls: $|\text{Var}(\mathcal{F})|$.
- 295 benchmarks from SAT Comp 2011, TO = 1800 sec, MO = 4GB.

Bottleneck: SAT solver calls.

Optimizations are aimed at:

- Making fewer SAT solver calls.
- Making SAT solver calls easier.
Hybrid VMUS Computation w/o optimizations

Does not scale:

- Number of SAT solver calls: $|\text{Var}(\mathcal{F})|$.
- 295 benchmarks from SAT Comp 2011, TO = 1800 sec, MO = 4GB.
Hybrid VMUS Computation w/o optimizations

Does not scale:

- Number of SAT solver calls: $|\text{Var}(\mathcal{F})|$
- 295 benchmarks from SAT Comp 2011, TO = 1800 sec, MO = 4GB.
- Bottleneck: SAT solver calls.
Hybrid VMUS Computation w/o optimizations

Does not scale:

▶ Number of SAT solver calls: $|\text{Var}(\mathcal{F})|$.
▶ 295 benchmarks from SAT Comp 2011, TO = 1800 sec, MO = 4GB.
▶ Bottleneck: SAT solver calls.

Optimizations are aimed at:

▶ Making fewer SAT solver calls.
▶ Making SAT solver calls easier.
Optimizations: variable-set refinement

- **Fact:** Let \(U \) be an unsatisfiable core of \(F \). Then, \(\text{Var}(U) \) contains at least one VMUS of \(F \).
Fact: Let \mathcal{U} be an unsatisfiable core of \mathcal{F}. Then, $\text{Var}(\mathcal{U})$ contains at least one VMUS of \mathcal{F}.

Hence, if \mathcal{U} is an unsatisfiable core of \mathcal{F}, all variables outside of $\text{Var}(\mathcal{U})$ can be removed from \mathcal{F} — variable-set refinement.
Fact: Let \mathcal{U} be an unsatisfiable core of \mathcal{F}. Then, $\text{Var}(\mathcal{U})$ contains at least one VMUS of \mathcal{F}.

Hence, if \mathcal{U} is an unsatisfiable core of \mathcal{F}, all variables outside of $\text{Var}(\mathcal{U})$ can be removed from \mathcal{F} — variable-set refinement.

Relies on the capability of SAT solvers to return unsatisfiable core.
Fact: Let \mathcal{U} be an unsatisfiable core of \mathcal{F}. Then, $\text{Var}(\mathcal{U})$ contains at least one VMUS of \mathcal{F}.

Hence, if \mathcal{U} is an unsatisfiable core of \mathcal{F}, all variables outside of $\text{Var}(\mathcal{U})$ can be removed from \mathcal{F} — variable-set refinement.

Relies on the capability of SAT solvers to return unsatisfiable core.

Applied to the working set of variables V_w inside the main loop, \mathcal{F}_w is updated accordingly.
Optimizations: variable-set refinement

▷ **Fact:** Let \mathcal{U} be an unsatisfiable core of \mathcal{F}. Then, $\text{Var}(\mathcal{U})$ contains at least one VMUS of \mathcal{F}.

▷ Hence, if \mathcal{U} is an unsatisfiable core of \mathcal{F}, all variables outside of $\text{Var}(\mathcal{U})$ can be removed from \mathcal{F} — *variable-set refinement*.

▷ Relies on the capability of SAT solvers to return unsatisfiable core.

▷ Applied to the working set of variables V_w inside the main loop, \mathcal{F}_w is updated accordingly.

▷ Effect: remove multiple unnecessary variables in one SAT solver call.
Hybrid VMUS Computation: variable-set refinement

Input \mapsto **Output**: Unsatisfiable CNF Formula \mathcal{F} \mapsto $V \in \text{VMUS}(\mathcal{F})$

- $V \leftarrow \emptyset$ // VMUS under-approximation
- $V_w \leftarrow \text{Var}(\mathcal{F})$ // Working (‘‘untested’’) set of variables
- $\mathcal{F}_w \leftarrow \mathcal{F}$ // Working formula

while $V_w \neq \emptyset$ **do** // Inv: $\mathcal{F}_w = \mathcal{F}|_{V \cup V_w}$ and $\forall v \in V$ is nec. for \mathcal{F}_w

- $v \leftarrow \text{PickVariable}(V_w)$
- $V_w \leftarrow V_w \setminus \{v\}$
- $\mathcal{R} \leftarrow \text{CNF}(\neg \mathcal{F}_w^v)$ // Redundancy removal
- $\text{st} = \text{SAT}(\mathcal{F}_w \setminus \mathcal{F}^v)$
- **if** $\text{st} = \text{false}$ **then** // v is not necessary for \mathcal{F}_w
 - $V_w \leftarrow V_w \cap \text{Var}(U)$ // Variable-set refinement
 - $\mathcal{F}_w \leftarrow \mathcal{F}_w \setminus \mathcal{F}^v$
- **else** // v is necessary for \mathcal{F}_w
 - $V \leftarrow V \cup \{v\}$
 - $V_w \leftarrow V_w \setminus \{v\}$

return V // $V \in \text{VMUS}(\mathcal{F})$ and $\mathcal{F}_w = \mathcal{F}|_{V \in \text{VMU}}$
Hybrid VMUS Computation: variable-set refinement

Input \mapsto **Output**: Unsatisfiable CNF Formula $\mathcal{F} \mapsto V \in \text{VMUS}(\mathcal{F})$

\[
\begin{align*}
V & \leftarrow \emptyset \quad \text{ // VMUS under-approximation} \\
V_w & \leftarrow \text{Var}(\mathcal{F}) \quad \text{ // Working (‘‘untested’’) set of variables} \\
\mathcal{F}_w & \leftarrow \mathcal{F} \quad \text{ // Working formula}
\end{align*}
\]

\textbf{while} $V_w \neq \emptyset$ \textbf{do} \quad // Inv: $\mathcal{F}_w = \mathcal{F}|_{V \cup V_w}$ and $\forall v \in V$ is nec. for \mathcal{F}_w

\[
\begin{align*}
& v \leftarrow \text{PickVariable}(V_w) \\
& V_w \leftarrow V_w \setminus \{v\} \\
& \mathcal{R} \leftarrow \text{CNF}(\neg \mathcal{F}_w^v) \\
& \langle \text{st}, U \rangle = \text{SAT}(\mathcal{F}_w \setminus \mathcal{F}_w^v) \\
& \textbf{if} \ \text{st} = \text{false} \ \textbf{then} \\
& \quad V_w \leftarrow V_w \cap \text{Var}(U) \\
& \quad \mathcal{F}_w \leftarrow \mathcal{F}_w|_{V \cup V_w} \\
& \textbf{else} \\
& \quad V \leftarrow V \cup \{v\} \\
& \quad V_w \leftarrow V_w \setminus \{v\} \\
\end{align*}
\]

\textbf{return} V \quad // $V \in \text{VMUS}(\mathcal{F})$ and $\mathcal{F}_w = \mathcal{F}|_V \in \text{VMU}$
Impact of variable-set refinement

- 295 benchmarks from SAT Comp 2011, $T_O = 1800$ sec, $M_O = 4$ GB.

- CPU Time, w/o optimizations (#sol = 157) vs refinement (#sol = 239)
- Color: VMUS size (% of the number of variables in the input).
Fact: Take $\mathcal{F} \in$ UNSAT and an assignment τ to $\text{Var}(\mathcal{F})$. Then, any variable shared among the clauses falsified by τ is necessary for \mathcal{F}.
Fact: Take $\mathcal{F} \in \text{UNSAT}$ and an assignment τ to $\text{Var}(\mathcal{F})$. Then, any variable shared among the clauses falsified by τ is necessary for \mathcal{F}.

Why?

- Let \mathcal{F}' be the clauses of \mathcal{F} falsified by τ.
- Let v be any variable shared among the clauses of \mathcal{F}'
 - i.e. $\forall C \in \mathcal{F}', v \in \text{Var}(C)$.
- Remove v from \mathcal{F}.
- All clauses of \mathcal{F}' will be gone, because they all contain v.
- We get a subformula of $\mathcal{F} \setminus \mathcal{F}'$.
- But, $\mathcal{F} \setminus \mathcal{F}' \in \text{SAT}$, since τ is its model.
- Hence, $\mathcal{F} \setminus \mathcal{F}' \setminus v \in \text{SAT}$, and so v is necessary for \mathcal{F}.
Fact: Take $\mathcal{F} \in \text{UNSAT}$ and an assignment τ to $\text{Var}(\mathcal{F})$. Then, any variable shared among the clauses falsified by τ is necessary for \mathcal{F}.

Why?

- Let \mathcal{F}' be the clauses of \mathcal{F} falsified by τ.
- Let v be any variable shared among the clauses of \mathcal{F}'
 - i.e. $\forall C \in \mathcal{F}', \ v \in \text{Var}(C)$.
- Remove v from \mathcal{F}.
- All clauses of \mathcal{F}' will be gone, because they all contain v.
- We get a subformula of $\mathcal{F} \setminus \mathcal{F}'$.
- But, $\mathcal{F} \setminus \mathcal{F}' \in \text{SAT}$, since τ is its model.
- Hence, $\mathcal{F} \setminus \mathcal{F}' \in \text{SAT}$, and so v is necessary for \mathcal{F}.

So, any assignment τ, such that $v \in \bigcap_{C \in \text{Unsat}(\mathcal{F},\tau)} \text{Var}(C)$, is a witness of necessity of v in \mathcal{F}.

A. Belov, A. Ivrii, A. Matsliakh and J. Marques-Silva
Note: in VHYB, when $\mathcal{F}_w \setminus \mathcal{F}^{\nu}_w \in SAT$, the assignment returned by the SAT solver (call it τ) is a witness of ν.

Variable-based model rotation (VMR):

1. Flip ν to get new assignment τ': all clauses in $\text{Unsat}(\mathcal{F}_w, \tau)$ are now satisfied.
2. But, some other clauses must be falsified by τ'.
3. Any variable shared among the clauses falsified by τ' is necessary.
4. Continue recursively (but watch for loops).

Effect: detect multiple necessary variables in a single SAT solver call.

Details and an "extended" (improved) version of VMR are in the paper.

A. Belov, A. Ivrii, A. Matsliah and J. Marques-Silva
Variable MUSes
SAT 2012
Note: in VHYB, when $F_w \setminus F^v_w \in \text{SAT}$, the assignment returned by the SAT solver (call it τ) is a witness of v.

τ might be a witness for another variable too. E.g. when $\text{Unsat}(F_w, \tau) = \{C\}$, every variable in C is necessary for F_w.

Variable-based model rotation (VMR): take τ and try to modify it into a witness τ' for another variable. How?

1. Flip v to get new assignment τ': all clauses in $\text{Unsat}(F_w, \tau)$ are now satisfied.
2. But, some other clauses must be falsified by τ'.
3. Any variable shared among the clauses falsified by τ' is necessary.
4. Continue recursively (but watch for loops).

Effect: detect multiple necessary variables in a single SAT solver call. Details and an "extended" (improved) version of VMR are in the paper.
Note: in VHYB, when $F_w \setminus F^v_w \in \text{SAT}$, the assignment returned by the SAT solver (call it τ) is a witness of v.

τ might be a witness for another variable too. E.g. when $\text{Unsat}(F_w, \tau) = \{C\}$, every variable in C is necessary for F_w.

Variable-based model rotation: take τ and try to modify it into a witness τ' for another variable. How?

1. Flip v to get new assignment τ': all clauses in $\text{Unsat}(F_w, \tau)$ are now satisfied.
2. But, some other clauses must be falsified by τ'.
3. Any variable shared among the clauses falsified by τ' is necessary.
4. Continue recursively (but watch for loops).
Optimizations: variable-based model rotation (VMR)

- Note: in VHYB, when $\mathcal{F}_w \setminus \mathcal{F}_w^v \in \text{SAT}$, the assignment returned by the SAT solver (call it τ) is a witness of v.

- τ might be a witness for another variable too. E.g. when $\text{Unsat}(\mathcal{F}_w, \tau) = \{ C \}$, every variable in C is necessary for \mathcal{F}_w.

- **Variable-based model rotation**: take τ and try to modify it into a witness τ' for another variable. How?
 1. Flip v to get new assignment τ': all clauses in $\text{Unsat}(\mathcal{F}_w, \tau)$ are now satisfied.
 2. But, some other clauses must be falsified by τ'.
 3. Any variable shared among the clauses falsified by τ' is necessary.
 4. Continue recursively (but watch for loops).

- Effect: detect multiple necessary variables in a single SAT solver call.
Note: in VHYB, when $F_w \setminus F^v_w \in \text{SAT}$, the assignment returned by the SAT solver (call it τ) is a witness of v.

τ might be a witness for another variable too. E.g. when $\text{Unsat}(F_w, \tau) = \{C\}$, every variable in C is necessary for F_w.

Variable-based model rotation: take τ and try to modify it into a witness τ' for another variable. How?

1. Flip v to get new assignment τ': all clauses in $\text{Unsat}(F_w, \tau)$ are now satisfied.
2. But, some other clauses must be falsified by τ'.
3. Any variable shared among the clauses falsified by τ' is necessary.
4. Continue recursively (but watch for loops).

Effect: detect multiple necessary variables in a single SAT solver call.

Details and an “extended” (improved) version of VMR are in the paper.
Hybrid VMUS Computation: VMR

Input \mapsto **Output**: Unsatisfiable CNF Formula $\mathcal{F} \mapsto V \in \text{VMUS}(\mathcal{F})$

- $V \leftarrow \emptyset$ // VMUS under-approximation
- $V_w \leftarrow \text{Var}(\mathcal{F})$ // Working (‘‘untested’’) set of variables
- $\mathcal{F}_w \leftarrow \mathcal{F}$ // Working formula

while $V_w \neq \emptyset$ do // Inv: $\mathcal{F}_w = \mathcal{F}|_{V \cup V_w}$ and $\forall v \in V$ is nec. for \mathcal{F}_w

- $v \leftarrow \text{PickVariable}(V_w)$
- $V_w \leftarrow V_w \setminus \{v\}$
- $\mathcal{R} \leftarrow \text{CNF}(\neg \mathcal{F}_w^v)$ // Redundancy removal
- $\langle \text{st}, U \rangle = \text{SAT}(\mathcal{F}_w \setminus \mathcal{F}_w^v)$
- if $\text{st} = \text{false}$ then
 - $V_w \leftarrow V_w \cap \text{Var}(U)$ // Variable-set refinement
 - $\mathcal{F}_w \leftarrow \mathcal{F}_w|_{V \cup V_w}$
- else
 - $V \leftarrow V \cup \{v\}$ // v is necessary for \mathcal{F}_w
 - $V_w \leftarrow V_w \setminus v$

return V // $V \in \text{VMUS}(\mathcal{F})$ and $\mathcal{F}_w = \mathcal{F}|_{V \in \text{VMU}}$
Hybrid VMUS Computation: VMR

Input \mapsto **Output**: Unsatisfiable CNF Formula $\mathcal{F} \mapsto V \in VMUS(\mathcal{F})$

$V \leftarrow \emptyset$ // VMUS under-approximation

$V_w \leftarrow \text{Var}(\mathcal{F})$ // Working (‘‘untested’’) set of variables

$\mathcal{F}_w \leftarrow \mathcal{F}$ // Working formula

while $V_w \neq \emptyset$ do // Inv: $\mathcal{F}_w = \mathcal{F}|_{V \cup V_w}$ and $\forall v \in V$ is nec. for \mathcal{F}_w

\[\begin{align*}
& v \leftarrow \text{PickVariable}(V_w) \\
& V_w \leftarrow V_w \setminus \{v\} \\
& \mathcal{R} \leftarrow \text{CNF}(\neg \mathcal{F}_w^v) \\
& \langle \text{st}, U, \tau \rangle = \text{SAT}(\mathcal{F}_w \setminus \mathcal{F}_w^v) \\
& \text{if } \text{st} = \text{false} \text{ then} \\
& \quad V_w \leftarrow V_w \cap \text{Var}(U) \\
& \quad \mathcal{F}_w \leftarrow \mathcal{F}_w|_{V \cup V_w} \\
& \text{else} \\
& \quad \text{VModelRotation}(\mathcal{F}_w, V, \tau) \quad \text{ // } v \in V \text{ after this call} \\
& \quad V_w \leftarrow V_w \setminus V \quad \text{ // } v \text{ is necessary for } \mathcal{F}_w
\end{align*} \]

return V // $V \in VMUS(\mathcal{F})$ and $\mathcal{F}_w = \mathcal{F}|_{V \in VMU}$
Impact of variable-based model rotation

- 295 benchmarks from SAT Comp 2011, TO = 1800 sec, MO = 4GB.

- CPU Time, refinement (#sol=239) vs ref.+EVMR (#sol=264)
- Color: VMUS size (% of the number of variables in the input).
Fact: If $\mathcal{F} \in \text{UNSAT}$, then for any $v \in \text{Var}(\mathcal{F})$,
$\mathcal{F} \setminus \mathcal{F}^v \in \text{SAT}$ if and only if $(\mathcal{F} \setminus \mathcal{F}^v) \cup \text{CNF}(\neg \mathcal{F}^v) \in \text{SAT}$.

$\neg \text{CNF}(\mathcal{F}^v)$ stands for a satisfiability-preserving transformation of the formula $\neg \mathcal{F}^v$ (we used Plaisted-Greenbaum).

During hybrid VMUS extraction: add the clauses of $\text{CNF}(\neg \mathcal{F}^v)$ to the formula before SAT solver call.
Fact: If $\mathcal{F} \in \text{UNSAT}$, then for any $v \in \text{Var}(\mathcal{F})$, $\mathcal{F} \setminus \mathcal{F}^v \in \text{SAT}$ if and only if $(\mathcal{F} \setminus \mathcal{F}^v) \cup \text{CNF}(\neg \mathcal{F}^v) \in \text{SAT}$.

- $\neg \text{CNF}(\mathcal{F}^v)$ stands for a satisfiability-preserving transformation of the formula $\neg \mathcal{F}^v$ (we used Plaisted-Greenbaum).
- During hybrid VMUS extraction: add the clauses of $\text{CNF}(\neg \mathcal{F}^v)$ to the formula before SAT solver call.

Effect: make SAT calls easier.
Optimizations: redundancy removal

- **Fact:** If $\mathcal{F} \in \text{UNSAT}$, then for any $v \in \text{Var}(\mathcal{F})$, $\mathcal{F} \setminus \mathcal{F}^v \in \text{SAT}$ if and only if $(\mathcal{F} \setminus \mathcal{F}^v) \cup \text{CNF}(\neg\mathcal{F}^v) \in \text{SAT}$.

 - $\neg\text{CNF}(\mathcal{F}^v)$ stands for a satisfiability-preserving transformation of the formula $\neg\mathcal{F}^v$ (we used Plaisted-Greenbaum).
 - During hybrid VMUS extraction: add the clauses of $\text{CNF}(\neg\mathcal{F}^v)$ to the formula before SAT solver call.

 - **Effect:** make SAT calls easier.
 - **But:** if the clauses of $\text{CNF}(\neg\mathcal{F}^v)$ are included in the unsatisfiable core (in case of UNSAT outcome), the core cannot be used safely for the variable-set refinement.
Hybrid VMUS Extraction: redundancy removal

Input \mapsto **Output**: Unsatisfiable CNF Formula $\mathcal{F} \mapsto V \in \text{VMUS}(\mathcal{F})$

$V \leftarrow \emptyset$ \hspace{1cm} // VMUS under-approximation

$V_w \leftarrow \text{Var}(\mathcal{F})$ \hspace{1cm} // Working (‘‘untested’’) set of variables

$\mathcal{F}_w \leftarrow \mathcal{F}$ \hspace{1cm} // Working formula

while $V_w \neq \emptyset$ **do** \hspace{1cm} // Inv: $\mathcal{F}_w = \mathcal{F}|_{V \cup V_w}$ and $\forall v \in V$ is nec. for \mathcal{F}_w

1. $v \leftarrow \text{PickVariable}(V_w)$
2. $V_w \leftarrow V_w \setminus \{v\}$
3. $R \leftarrow \text{CNF}(\neg \mathcal{F}_w^v)$ \hspace{1cm} // Redundancy removal

4. $\langle \text{st}, \mathcal{U}, \tau \rangle = \text{SAT}(\mathcal{F}_w \setminus \mathcal{F}_w^v)$

5. **if** $\text{st} = \text{false}$ **then**

6. 1. $V_w \leftarrow V_w \cap \text{Var}(\mathcal{U})$
7. 2. $\mathcal{F}_w \leftarrow \mathcal{F}_w|_{V \cup V_w}$ \hspace{1cm} // v is not necessary for \mathcal{F}_w

8. **else**

9. 1. $\text{VModelRotation}(\mathcal{F}_w, V, \tau)$ \hspace{1cm} // $v \in V$ after this call
10. 2. $V_w \leftarrow V_w \setminus V$ \hspace{1cm} // v is necessary for \mathcal{F}_w

return V \hspace{1cm} // $V \in \text{VMUS}(\mathcal{F})$ and $\mathcal{F}_w = \mathcal{F}|_{v \in \text{VMU}}$

A. Belov, A. Ivrii, A. Matsliah and J. Marques-Silva
Variable MUSes
Hybrid VMUS Extraction: redundancy removal

Input \mapsto Output: Unsatisfiable CNF Formula $\mathcal{F} \mapsto V \in \text{VMUS}(\mathcal{F})$

\[
V \leftarrow \emptyset \quad \text{// VMUS under-approximation}
\]

\[
V_w \leftarrow \text{Var}(\mathcal{F}) \quad \text{// Working (‘‘untested’’) set of variables}
\]

\[
\mathcal{F}_w \leftarrow \mathcal{F} \quad \text{// Working formula}
\]

\[
\text{while } V_w \neq \emptyset \text{ do} \quad \text{// Inv: } \mathcal{F}_w = \mathcal{F}|_{V \cup V_w} \text{ and } \forall v \in V \text{ is nec. for } \mathcal{F}_w
\]

\[
\begin{align*}
v & \leftarrow \text{PickVariable}(V_w) \\
V_w & \leftarrow V_w \setminus \{v\} \\
\mathcal{R} & \leftarrow \text{CNF}(\neg \mathcal{F}_w^v) \quad \text{// Redundancy removal}
\end{align*}
\]

\[
\langle \text{st}, U, \tau \rangle = \text{SAT}((\mathcal{F}_w \setminus \mathcal{F}_w^v) \cup \mathcal{R})
\]

\[
\begin{align*}
\text{if } \text{st} = \text{false} \text{ then} & \quad \text{// } v \text{ is not necessary for } \mathcal{F}_w \\
& \begin{align*}
& \text{if } U \cap \mathcal{R} = \emptyset \text{ then } V_w \leftarrow V_w \cap \text{Var}(U) \quad \text{// ‘‘Safe’’ refinement} \\
& \quad \mathcal{F}_w \leftarrow \mathcal{F}_w|_{V \cup V_w}
\end{align*}
\end{align*}
\]

\[\text{else} \quad \text{// } v \text{ is necessary for } \mathcal{F}_w
\]

\[
\begin{align*}
& \quad \text{VModelRotation}(\mathcal{F}_w, V, \tau) \quad \text{// } v \in V \text{ after this call} \\
& \quad V_w \leftarrow V_w \setminus V
\end{align*}
\]

\[\text{return } V \quad \text{// } V \in \text{VMUS}(\mathcal{F}) \text{ and } \mathcal{F}_w = \mathcal{F}|_{V \in \text{VMU}}
\]
Impact of redundancy removal

- 295 benchmarks from SAT Comp 2011, TO = 1800 sec, MO = 4GB.

- CPU Time, ref.+EVMR vs ref.+EVMR+RR. Average speedup: 15%.
- Color: VMUS size (% of the number of variables in the input).
Impact of all optimizations

- 295 benchmarks from SAT Comp 2011, TO = 1800 sec, MO = 4GB.

Additional approaches (in the paper)

Relaxation-variable based approach.
- Lets the SAT solver to *find* a necessary variable.
- Probably won’t scale (have not tried it).

Translation to group-MUS computation problem.
- For dense formulas: for each $v \in \text{Var}(F)$ introduce two variables v_p and v_n, and
 1. replace v with v_p and $\neg v$ with v_n;
 2. put the result into group 0;
 3. make a group that says $v_p \leftrightarrow v_n$.
- For sparse formulas: for each $v \in \text{Var}(F)$ introduce an activation variable a_v, and
 1. add an activation variable a_v to clause C if $v \in C$;
 2. put all translated clauses to group 0;
 3. for each variable make a group $\{a_v\}$.

Outperformed by Hybrid VMUS algorithm by a wide margin (see paper)
Additional approaches (in the paper)

Relaxation-variable based approach.

- Lets the SAT solver to find a necessary variable.
- Probably won’t scale (have not tried it).

Translation to group-MUS computation problem.

- For dense formulas: for each $v \in Var(F)$ introduce two variables v_p and v_n, and
 1. replace v with v_p and $\neg v$ with v_n;
 2. put the result into group 0;
 3. make a group that says $v_p \leftrightarrow v_n$.

Outperformed by Hybrid VMUS algorithm by a wide margin (see paper)

A. Belov, A. Ivrii, A. Matsliah and J. Marques-Silva
Additional approaches (in the paper)

Relaxation-variable based approach.
- Lets the SAT solver to find a necessary variable.
- Probably won’t scale (have not tried it).

Translation to group-MUS computation problem.
- For dense formulas: for each $v \in \text{Var}(\mathcal{F})$ introduce two variables v_p and v_n, and
 1. replace v with v_p and $\neg v$ with v_n;
 2. put the result into group 0;
 3. make a group that says $v_p \leftrightarrow v_n$.
- For sparse formulas: for each $v \in \text{Var}(\mathcal{F})$ introduce an activation variable a_v, and
 1. add an activation variable a_v to clause C if $v \in C$;
 2. put all translated clauses to group 0;
 3. for each variable make a group $\{a_v\}$.
Additional approaches (in the paper)

Relaxation-variable based approach.
- Lets the SAT solver to *find* a necessary variable.
- Probably won’t scale (have not tried it).

Translation to group-MUS computation problem.
- For dense formulas: for each \(v \in \text{Var}(\mathcal{F}) \) introduce two variables \(v_p \) and \(v_n \), and
 1. replace \(v \) with \(v_p \) and \(\neg v \) with \(v_n \);
 2. put the result into group 0;
 3. make a group that says \(v_p \leftrightarrow v_n \).
- For sparse formulas: for each \(v \in \text{Var}(\mathcal{F}) \) introduce an activation variable \(a_v \), and
 1. add an activation variable \(a_v \) to clause \(C \) if \(v \in C \);
 2. put all translated clauses to group 0;
 3. for each variable make a group \(\{a_v\} \).

Outperformed by Hybrid VMUS algorithm by a wide margin (see paper)
Performance comparison: run-time

- 295 benchmarks from SAT Comp 2011, TO = 1800 sec, MO = 4GB.
VMUS extraction vs MUS extraction

- 295 benchmarks from SAT Comp 2011, TO = 1800 sec, MO = 4GB.

- CPU Time, MUS (#sol=245) vs VMUS extraction (#sol=265).
Summary

- Hybrid VMUS Extraction — significant performance gains vs state-of-the-art due to optimizations.
Summary

- Hybrid VMUS Extraction — significant performance gains vs state-of-the-art due to optimizations.

Thank you for your attention!
Summary

- Hybrid VMUS Extraction — significant performance gains vs state-of-the-art due to optimizations.
- A number of alternative approaches (not as efficient).
Summary

- Hybrid VMUS Extraction — significant performance gains vs state-of-the-art due to optimizations.
- A number of alternative approaches (not as efficient).
- VMUS computation is in many cases faster than MUS computation ⇒ perhaps some applications of MUSes could be re-considered.
Summary

- Hybrid VMUS Extraction — significant performance gains vs state-of-the-art due to optimizations.
- A number of alternative approaches (not as efficient).
- VMUS computation is in many cases faster than MUS computation ⇒ perhaps some applications of MUSes could be re-considered.

Thank you for your attention!